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Motivation for NLP Infrastructure and API

• NLP Interoperability

• NLP Complexity

• NLP Errors
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Motivation

• NLP Interoperability
• Syntactic level: output formats are incompatible

• Semantic level: annotation standards do not exist

• Incompatibility of outputs and annotations

• Example:
• Stanford CoreNLP

• FreeLing

• Spacy

• …
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Issues

• NLP Complexity:
• Interpretation and processing of outputs

• Structural information

• Meaning of Part-of-Speech tags

• Interpretation of Dependency Labels

• Example:
• Constituent Parse Tree

• Lexical Functional Grammar C- and F-structure

3/22/2019 (C) 2019 by D. Cavar 6



NLP Issues

• NLP Errors in analysis:
• Expert knowledge and knowledge of language necessary
• Model specific error types

• Example:
• Allen NLP:

• Coreference Resolution
• Constituent Parser
• Dependency Parser
• Open Domain Information Extraction (OpenIE)

• Stanford CoreNLP
• …
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NLP Infrastructure

• NLP Errors
• Introduce Redundancy: Multiple NLP components for the same annotation 

task

• Repair systematic output errors

• NLP Complexity
• Build an API to simplify access, facilitate use of advanced NLP output

• NLP Interoperability
• Normalization and standardization of output formats and annotations

• Uniform API for NLP
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NLP Services

• Functional Aspects
• Differences in Linguistic Annotation

• Underlying Models/Theories Differ

• Solution
• Merging outputs from different NLP components
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NLP Services

• Technical Issues
• Configurational Complexity

• Dependencies for libraries, modules, extensions (Python, Java, C++)

• Memory
• Large models

• Runtime memory requirements

• Storage (file, db) requirements

• Platform limitations

• Hardware requirements: CPU & GPU
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Microservice Architecture

• Solution: RESTful Microservice architecture
• Scalability

• Target platform and remote access (intranet or Cloud service)

• Flexibility
• Replaceable components

• Versioning

• Open to numerous programming languages, systems, architectures
• Dominance of Python in NLP limits engineering possibilities and integration of NLP in 

larger production environments
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NLP Services

• Most commonly used NLP services:
• Tokenizer
• Sentence segmentation
• Part-of-Speech Tagging
• Embeddings

• Less common NLP services:
• Morphological analysis
• Coreference and Anaphora Resolution
• Dependency Parsing
• Constituent Parsing
• Semantic Role Labeling
• …
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NLP API

• Linguistic complexity as a barrier
• Understanding of Parse Trees and Potential Use in Applications

• API as a Translational Service
• Mapping of Linguistic Information to Useful Services
• Transformation of NLP Output

• Example:
• Scope relation and syntactic trees
• Part-of-Speech tags and morph-syntactic features
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NLP Output Format

• Normalization and Interoperability via Output Standardization

• Other Standards (no real standards)
• CONLL – text-based line to token format

• Proprietary JSON and XML formats

• Binary objects in Python

• Issues with other standards:
• Lack of interoperability

• Lack of features

• Data size and processing complexity
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JSON-NLP

• JSON:
• Full support in most important programming languages
• Human readable
• Compact and efficient

• Extended normalized feature set:
• Document level annotation: meta-info, tokens
• Annotation of e.g. coreference types, semantic, pragmatic features
• Translational layer: making implicit features explicit, providing features like 

voice, tempus, aspect
• Annotation of discontinuities
• Implicit, covert tokens (e.g. ellipsis, gapping, implicit arguments)
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JSON-NLP

• Open and Free on GitHub (https://github.com/dcavar/JSON-NLP)

• Converters from major NLP pipelines and components to JSON-NLP

• Converters from JSON-NLP to other formats (e.g. CONLL), lossy 
conversion

• JSON Schema with Validation

• Translation of NLP output to extended annotations in JSON-NLP

• Enabling:
• Middleware for NLP for abstraction

• NLP output comparison
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JSON-NLP

• Extended features
• Encoding of time reference, duration of events, prosody, intonation, focus
• Clause detection, identification of phrasal heads and compounds

• Unification
• Symbolic and Probabilistic Algorithm
• Merging of n-JSON-NLP files
• Detection of mismatches in NLP-annotations

• Facilitates
• Deeper comparison and evaluation of individual NLP components
• Ensembles of NLP components or pipelines

3/22/2019 (C) 2019 by D. Cavar 17



NLP Ensemble

• HooSIER

NLP-ensemble
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NLP Infrastructure

• Python-based technologies
• spaCy, Flair, Polyglot, Natural Language Toolkit (NLTK), Xrenner, …

• Java-based technologies
• OpenNLP, LingPipe, Stanford CoreNLP, Malt Parser, …

• Hybrid technologies
• E.g. C(++) Foma in Java with JNI, in Python

• Included models:
• Word embeddings: word2vec, GloVe, Numberbatch, FastText, Flair, ELMo, 

BERT

• All available as: RESTful Microservices with JSON-NLP output
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NLP Infrastructure

• Facilitating research
• Evaluation and comparison of NLP components, models, embeddings

• Ensembles of NLP components solving problems that cannot be solved end-
to-end using Deep Learning alone
• Example: Coreference and anaphora resolution with semantic relevance

• Take the knife, cut the lime in two halves, and put it down.

• Take the knife, cut the lime in two halves, and squeeze it.

• Generating ambiguities to work around lack of interactive parallelism:
• John met Peter. He likes him a lot.

• He could be John and him could be Peter or He could be Peter and him could be John or 
…

• Deep NLP for any kind of text or language processing

3/22/2019 (C) 2019 by D. Cavar 20



Semantic Processing

• Meaning and Compositionality as Formal Mapping from Syntax to 
Semantic Representation (Bresnan, LFG)
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Frank &

Genabith

(2001)

Glue Semantic

Analysis 
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Description Logic Approach

• Direct mapping of sentence and clause content to graph of concepts 
and relations

• Accumulating properties in concepts or nodes, and for relations or 
links:
• Attribute-Value table

• OWL for semantic check and validity
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Knowledge Graphs

• Concepts and Relations
• Mostly unconstrained

• Domain specific or free

• Attributes and Values
• encoding properties, time reference, …
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Semantic Relations

• Extraction of core semantic relations: predicate and arguments

• Example:
• While travelling in Africa, John Smith, the CEO of Talora Inc. bought

surprisingly a farm in Kenia.
John Smith – buy – a farm

PERS          TRANS    INDEF

SUBJ           PRED       OBJ

• Required components
• Deep NLP
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Information Extraction

• Basic NLP: tokenization, lemmatization, Part-of-Speech tagging, split 
into sentences

• More advanced: Clause level segmentation

• Parsing: Dependency and Constituent Structure

• Problems:
• Margin of Error

• Solution:
• Parallelization and NLP ensembles
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NLP Issues and IE

• Scope (missing in NLP technologies)
• John bought a car.
• Peter said that John bought a car.
• It is not true that John bought a car.

• Ellipsis
• John bought a car and Mary bought a car.
• John bought a car and John drove to Canada.

• Gapping
• John liked to read books and Mary liked to read newspapers.

• Implicit arguments:
• John wants PRO to read a book.
• Got it!
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NLP Extensions

• Knowledge representations
• WordNet
• VerbNet
• PropBank
• FrameNet
• Knowledge Graphs

• Predict required arguments

• Extract advanced properties of concepts, predicates, events from 
knowledge representations

• Integrated in HooSIER NLP Infrastructure
• Wrapped in JSON-NLP
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NLP Extensions

• Implicatures:
• John to Peter: I bought the blue car.

• John and Peter talked about cars earlier.
• There should be a set with at least one more car the John could have bought, but did not, and
• None of the cars in the set is blue.

• Clues: Definiteness of NP via the, and specificity of NP

• Presuppositions:
• John fed his cat this morning.
• Assumptions:

• John owns/has a cat/pet.
• John owned cat-food this morning.

• Clues: Possessive pronoun as modifier of Direct Object.
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Semantic Mapping and Reasoning

• Type of Predicative Arguments: Typing
• Named Entity Recognition
• Closes possible Hypernym in a Taxonomy or Ontology of isA relations

• Identity of entity: Linking
• Named Entity Recognition
• Link to unique identifier of entity in some knowledge representation, 

Ontology, Wikipedia, Knowledge Graph

• Issues: Ambiguity
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Linking Disambiguation

• Vector-based computation over text and graphs

• Context prediction:
• Compute the prediction of the context words in text with entity for all link-

candidates

• Similarity:
• Vectorize the sub-net of all concepts in Knowledge Graph and compute the similarity 

to the text with entity

• Example
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Pipeline

• Knowledge Graph Generation
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NLP Infrastructure

• Knowledge Graphs as RESTful Microservices
• YAGO integrated in Apache Jena with TDB, SPARQL interface, Lucene index
• ConceptNet using remote API
• Microsoft Concept Graph via interface to MongoDB
• DBpedia using remote API, possible setup as for YAGO
• SPARQL-based n-hop search and string-similarity search (mutli-lingual)

• Generated Graphs
• Neo4J using Cypher
• Stardog using SPARQL
• Open format based on abstract graph class
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Other systems

• FRED Graph Extraction
• http://wit.istc.cnr.it/stlab-tools/fred/

• http://wit.istc.cnr.it/stlab-tools/fred/demo/

• FreeLing
• http://nlp.lsi.upc.edu/freeling/demo/demo.php

• Limitations:
• NLP restricted

• Graphs or Networks limited or restricted
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Research Directions

• Encoding of Events and Event Types using graphs

• Link Prediction or computation of Paradigmatic relations

• Network representation of typed concepts

• Forensic Research: with implicatures and presuppositions

• News article comparison

• Abstract semantic search over typed and linked concepts and entities

• Information validation, knowledge mapping

• Etc.
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Resources

• JSON-NLP and Wrappers on GitHub repo

• KG Linking Disambiguator
• Graph storage and SPARQL interface: YAGO, ConceptNet, DBpedia, Microsoft 

Concept Graph

• NLP RESTful Microservice Modules (Java, Python, C(++))
• JSON-NLP output conversion
• RESTful wrappers for: Stanford CoreNLP, Apache OpenNLP, LingPipe, spaCy, 

Flair, Polyglot, NLTK, Xrenner, etc.

• Apache License 2.0
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NLP Infrastructure

• Estimated Server Requirements without stress-test
• WildFly 16 and Java 11

• Python 3.x

• GPU recommended

• Disk space for data, models, DBs: min. 2 TB (possibly more with DBpedia)

• RAM for daemons, services, runtime: min. 128 GB
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